在光速下穿越银河系需要10万年的时间,但飞船内的宇航员实际感觉过去了多久?
It takes 100k years to travel the Milky way at LS, but how long would it feel to the actual astronauts inside the ship to travel across?译文简介
原文+红迪讨论,建议在夜深人静思考宇宙到底有多大,人从哪里来人到哪里去的时候观看
正文翻译
Right now, there are only three things limiting how far our spacecrafts can take us in the Universe: the resources we devote to it, the constraints of our existing technology, and the laws of physics. If we were willing to devote more resources to it as a society, we have the technological know-how right now to take human beings to any of the known planets or moons within the Solar System, but not to any obxts in the Oort cloud or beyond. Crewed space travel to another star system, at least with the technology we have today, is still a dream for future generations.
目前,只有三个要素限制了我们的太空船能把我们带到宇宙的多远处:我们投入的资源,我们现有技术的限制,以及物理定律。如果我们愿意作为一个整体把更多的资源投入其中,我们现在就有能力,可以把人类带到太阳系内任何已知的行星或卫星上,但不能带到奥尔特云或更远的任何星体上。载人太空旅行到另一个恒星系,至少以我们今天的技术,仍然是子孙后代才能实现的梦想。
But if we could develop superior technology — nuclear-powered rockets, fusion technology, matter-antimatter annihilation, or even dark matter-based fuel — the only limits would be the laws of physics. Sure, if physics works as we understand it today, traversable wormholes might not be in the cards. We might not be able to fold space or achieve warp drive. And the limitations of Einstein’s relativity, preventing us from teleporting or traveling faster than light, might not ever be overcome. Even without invoking any new physics, we’d be able to travel surprisingly far in the Universe, reaching any obxt presently less than 18 billion light-years away. Here’s how we’d get there.
但是,如果我们能够开发出更先进的技术——核动力火箭、核聚变技术、反物质湮灭,甚至暗物质燃料——唯一的限制就是物理定律。当然,如果物理学像我们今天所理解的那样起作用,那么可穿越的虫洞可能就不存在了。我们可能无法折叠空间或实现曲率引擎。爱因斯坦相对论的局限性,阻止我们以比光速更快的速度传送或旅行,可能永远也无法克服。但即使不借助任何新的物理学理论,我们也能在宇宙中出人意料地旅行,到达目前距离我们不到180亿光年的任何物体。这是关于我们如何到达那里的解释:
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
但是,如果我们能够开发出更先进的技术——核动力火箭、核聚变技术、反物质湮灭,甚至暗物质燃料——唯一的限制就是物理定律。当然,如果物理学像我们今天所理解的那样起作用,那么可穿越的虫洞可能就不存在了。我们可能无法折叠空间或实现曲率引擎。爱因斯坦相对论的局限性,阻止我们以比光速更快的速度传送或旅行,可能永远也无法克服。但即使不借助任何新的物理学理论,我们也能在宇宙中出人意料地旅行,到达目前距离我们不到180亿光年的任何物体。这是关于我们如何到达那里的解释:
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
When we take a look at conventional rockets that we launch from Earth, it surprises most people to learn that they barely accelerate more rapidly than gravity accelerates us here on Earth. If we were to jump or drop from a high altitude, Earth’s gravity would accelerate us towards our planet’s center at 9.8 m/s2 (32 ft/s2). For every second that passes by while we’re in free-fall, so long as we neglect outside forces like air resistance, our speed increases in the downward direction by an additional 9.8 m/s (32 ft/s).
当我们看一看我们从地球发射的传统火箭时,大多数人惊讶地发现,它们的加速度几乎没有地球引力加速我们的速度快。如果我们从高空跳下,地球的引力会将我们以9.8米/s2 (32英尺/s2 )的加速度向我们的星球中心移动。当我们自由落体时,每过一秒,只要我们忽略空气阻力等外力,我们向下的速度就会增加9.8米/秒(32英尺/秒)。
The acceleration that we experience due to Earth’s gravity is known as “1g” (pronounced “one gee”), which exerts a force on all obxts equal to our mass times that acceleration: Newton’s famous F = ma. What makes our rockets so special is not that they accelerate at approximately this rate, as many obxts like cars, bullets, railguns, and even roller coasters frequently and easily surpass it. Rather, rockets are special because they sustain this acceleration for long periods of time in the same direction, enabling us to break the bonds of gravity and achieve escape velocity from Earth.
由于地球引力,我们所经历的加速度被称为“1g”(发音为“伊寄”),它对所有物体施加的力等于我们的质量乘以该加速度:即牛顿著名的F=ma。我们的火箭之所以如此特殊,并不是因为它们的加速度接近这个速度,许多物体,如汽车、子弹、轨道炮,甚至过山车,都经常轻易地超过它。相反,火箭是特殊的,因为它们在同一个方向上长时间保持这种加速度,使我们能够打破重力的束缚,实现从地球逃逸的速度。
由于地球引力,我们所经历的加速度被称为“1g”(发音为“伊寄”),它对所有物体施加的力等于我们的质量乘以该加速度:即牛顿著名的F=ma。我们的火箭之所以如此特殊,并不是因为它们的加速度接近这个速度,许多物体,如汽车、子弹、轨道炮,甚至过山车,都经常轻易地超过它。相反,火箭是特殊的,因为它们在同一个方向上长时间保持这种加速度,使我们能够打破重力的束缚,实现从地球逃逸的速度。
One of the greatest challenges facing human beings who wish to take long-term journeys in space is the biological effects of not having Earth’s gravity. Earth’s gravity is required for healthy development and maintenance of a human body, with our bodily functions literally failing us if we spend too long in space. Our bone densities drop; our musculature atrophies in significant ways; we experience “space blindness;” and even the International Space Station astronauts who are most diligent about doing hours of exercise a day for months are unable to support themselves for more than a few steps upon returning to Earth.
希望进行长时间太空旅行的人类面临的最大挑战之一是没有地球引力的生物反应。地球引力是人体健康发育和维持所必需的,如果我们在太空中呆得太久,我们的身体机能实际上就会衰退。我们的骨骼密度下降;我们的肌肉组织明显萎缩;我们会经历“空间盲症”。即使是国际空间站的宇航员,他们几个月来每天都要勤奋地锻炼几个小时,但回到地球后也无法支撑自己多走几步。
One way that challenge could be overcome is if we could sustain an acceleration of 1g not for a few minutes, propelling us into space, but continuously. A remarkable prediction of Einstein’s relativity — verified experimentally many times over — is that all obxts in the Universe can detect no difference between a constant acceleration and an acceleration due to gravity. If we could keep a spacecraft accelerating at 1g, there would be no physiological difference experienced by an astronaut on board that spacecraft as compared with a human in a stationary room on Earth.
克服这一挑战的一个方法是,如果我们能够持续1g的加速度,不是几分钟的时间,这只够推动我们进入太空。而是持续不断地保持这个速度。爱因斯坦的相对论有一个显著的预测——实验验证了多次——宇宙中的所有物体都无法检测到恒定加速度和重力加速度之间的差异。如果我们能使航天器保持1g的加速,那么在航天器上的宇航员与在地球上静止的房间里的人在生理上不会有什么不同。
克服这一挑战的一个方法是,如果我们能够持续1g的加速度,不是几分钟的时间,这只够推动我们进入太空。而是持续不断地保持这个速度。爱因斯坦的相对论有一个显著的预测——实验验证了多次——宇宙中的所有物体都无法检测到恒定加速度和重力加速度之间的差异。如果我们能使航天器保持1g的加速,那么在航天器上的宇航员与在地球上静止的房间里的人在生理上不会有什么不同。
It takes a leap of faith to presume that we might someday be able to achieve constant accelerations indefinitely, as that would necessitate having a limitless supply of fuel at our disposal. Even if we mastered matter-antimatter annihilation — a 100% efficient reaction — we are limited by the fuel we can bring on board, and we’d quickly hit a point of diminishing returns: the more fuel you bring, the more fuel you need to accelerate not only your spacecraft, but all the remaining fuel that’s on board as well.
假设我们有朝一日能够无间断地实现持续加速,这需要一种质的飞跃,因为这就代表着我们拥有无限的燃料供应。即使我们掌握了反物质湮灭 - 一种100%有效的反应(湮灭一旦发生,正反物质的质量将全部转化为能量)- 我们也会受到我们能携带到飞船上的燃料数量的限制,我们很快就会达到一个收益递减的点:你携带的燃料越多,你需要维持这个体量的燃料就越多,燃料不仅加速你的飞船的质量,还加速飞船上所有剩余的燃料的质量。
Still, there are many hopes that we could gather material for fuel on our journey. Ideas have included using a magnetic field to “scoop” charged particles into a rocket’s path, providing particles and antiparticles that could then be annihilated for propulsion. If dark matter turns out to be a specific type of particle that happens to be its own antiparticle — much like the common photon — then simply collecting it and annihilating it, if we could master that type of manipulation, could successfully supply a traveling spacecraft with all the fuel it needs for constant acceleration.
尽管如此,我们仍有很大希望在旅途中收集燃料资源。这些想法包括利用磁场将带电粒子“舀”到火箭的轨道上,提供粒子和反粒子,然后这些粒子和反粒子可以被湮灭用于推进。如果暗物质被证明是一种特殊类型的粒子,恰巧是它自己的反粒子——很像普通的光子——那么简单地收集并湮灭它,如果我们能够掌握这种操纵方式,就可以成功地为旅行的航天器提供恒速加速所需的所有燃料。
If it weren’t for Einstein’s relativity, you might think that, with each second that passes by, you’d simply increase your speed by another 9.8 m/s. If you started off at rest, it would only take you a little less than a year — about 354 days — to reach the speed of light: 299,792,458 m/s. Of course, that’s a physical impossibility, as no massive obxt can ever reach, much less exceed, the speed of light.
如果没有爱因斯坦的相对论,你可能会想,每过一秒,你只需再增加9.8米/秒的速度。如果你在休息的时候出发,只需要不到一年的时间——大约354天——就可以达到光速:299792458米/秒。当然,这在物理上讲是不可能的,因为没有一个大型的物体能够达到,更不用说超过光速了。
如果没有爱因斯坦的相对论,你可能会想,每过一秒,你只需再增加9.8米/秒的速度。如果你在休息的时候出发,只需要不到一年的时间——大约354天——就可以达到光速:299792458米/秒。当然,这在物理上讲是不可能的,因为没有一个大型的物体能够达到,更不用说超过光速了。
The way this would play out, in practice, is that your speed would increase by 9.8 m/s with each second that goes by, at least, initially. As you began to get close to the speed of light, reaching what physicists call “relativistic speeds” (where the effects of Einstein’s relativity become important), you’d start to experience two of relativity’s most famous effects: length contraction and time dilation.
实际上,这样会导致的结果是,你的速度每过一秒就会增加9.8米/秒,至少在最初是这样。当你开始接近光速,达到物理学家所谓的“相对速度”(爱因斯坦的相对论效应变得重要)时,你会开始体验相对论最著名的两个效应:长度收缩和时间膨胀。
实际上,这样会导致的结果是,你的速度每过一秒就会增加9.8米/秒,至少在最初是这样。当你开始接近光速,达到物理学家所谓的“相对速度”(爱因斯坦的相对论效应变得重要)时,你会开始体验相对论最著名的两个效应:长度收缩和时间膨胀。
Length contraction simply means that, in the direction an obxt travels, all of the distances it views will appear to be compressed. The amount of that contraction is related to how close to the speed of light it’s moving. For someone at rest with respect to the fast-moving obxt, the obxt itself appears compressed. But for someone aboard the fast-moving obxt, whether a particle, train, or spacecraft, the cosmic distances they’re attempting to traverse will be what’s contracted.
长度收缩简而言之就是说,在对象移动的方向上,它所看到的所有距离都将被压缩。收缩的程度与它运动的速度有多接近光速有关。对于相对于快速移动的对象处于静止状态的人来说,对象本身看起来是压缩的。但是对于那些在快速移动的物体上的人来说,无论是粒子、火车还是宇宙飞船,他们试图穿越的宇宙距离都是缩短的。
Because the speed of light is a constant for all observers, someone moving through space (relative to the stars, galaxies, etc.) at close to the speed of light will experience time passing more slowly, as well. The best illustration is to imagine a special kind of clock: one that bounces a single photon between two mirrors. If a “second” corresponds to one round-trip journey between the mirrors, a moving obxt will require more time for that journey to happen. From the perspective of someone at rest, time will appear to slow down significantly for the spacecraft the closer to the speed of light they get.
因为光速对于所有观察者来说都是恒定的,所以以接近光速在太空中移动的人(相对于恒星、星系等)也会经历更慢的时间流逝。最好的例子是想象一种特殊的时钟:在两个镜子之间反弹一个光子的时钟。如果“1秒”对应于两个镜面之间的一次往返行程,则移动的物体将需要更多的时间来完成该行程。从静止的人的角度来看,航天器的时间似乎会随着接近光速而明显减慢。
因为光速对于所有观察者来说都是恒定的,所以以接近光速在太空中移动的人(相对于恒星、星系等)也会经历更慢的时间流逝。最好的例子是想象一种特殊的时钟:在两个镜子之间反弹一个光子的时钟。如果“1秒”对应于两个镜面之间的一次往返行程,则移动的物体将需要更多的时间来完成该行程。从静止的人的角度来看,航天器的时间似乎会随着接近光速而明显减慢。
With the same, constant force applied, your speed would begin to asymptote: approaching, but never quite reaching, the speed of light. But the closer to that unreachable limit you get, with every extra percentage point as you go from 99% to 99.9% to 99.999% and so on, lengths contract and time dilates even more severely.
在同样的、恒定的力作用下,你的速度将开始逐渐接近光速:接近但从未完全达到光速。但当你越接近那无法达到的极限,从99%到99.9%再到99.999%再增加一个百分点,如此类推,长度就会缩短,时间会更严重地膨胀。
Of course, this is a bad plan. You don’t want to be moving at 99.9999+% the speed of light when you arrive at your destination; you want to have slowed back down. So the smart plan would be to accelerate at 1g for the first half of your journey, then fire your thrusters in the opposite direction, decelerating at 1g for the second half. This way, when you reach your destination, you won’t become the ultimate cosmic bug-on-a-windshield.
当然,这是一个糟糕的计划。当你快到达目的地时,你不想还在以99.9999+%的光速移动;你想放慢速度。因此,明智的计划是在你的旅程的前半段以1g的速度加速,然后朝相反的方向发射推进器,在下半段以1g的速度减速。这样,当你到达目的地时,你就不会成为挡风玻璃上的终极宇宙小飞虫。
当然,这是一个糟糕的计划。当你快到达目的地时,你不想还在以99.9999+%的光速移动;你想放慢速度。因此,明智的计划是在你的旅程的前半段以1g的速度加速,然后朝相反的方向发射推进器,在下半段以1g的速度减速。这样,当你到达目的地时,你就不会成为挡风玻璃上的终极宇宙小飞虫。
Adhering to this plan, over the first part of your journey, time passes almost at the same rate as it does for someone on Earth. If you traveled to the inner Oort cloud, it would take you about a year. If you then reversed course to return home, you’d be back on Earth after about two years total. Someone on Earth would have seen more time elapse, but only by a few weeks.
如果坚持这个计划,那么在你旅途的上半程,时间的流逝速度几乎和在地球上的任意某个人一样快。如果你想去奥尔特云内旅行,大约需要一年的时间。若你们倒转方向回家,你们将在大约两年后回到地球上。地球上的时间会过去更久,但只多出几个星期。
如果坚持这个计划,那么在你旅途的上半程,时间的流逝速度几乎和在地球上的任意某个人一样快。如果你想去奥尔特云内旅行,大约需要一年的时间。若你们倒转方向回家,你们将在大约两年后回到地球上。地球上的时间会过去更久,但只多出几个星期。
But the farther you went, the more severe those differences would be. A journey to Proxima Centauri, the nearest star system to the Sun, would take about 4 years to reach, which is remarkable considering it’s 4.3 light-years away. The fact that lengths contract and time dilates means that you experience less time than the distance you’re actually traversing would indicate. Someone back home on Earth, meanwhile, would age about an extra full year over that same journey.
但你走得越远,这些差异就越严重。距离太阳最近的恒星系统比邻星大约需要4年才能到达,考虑到它距离太阳4.3光年,这会是一次非凡的旅行。长度缩短而时间膨胀的事实意味着你经历的时间比你实际穿越的距离要少。同时,回到地球的人在同一次旅行中会多衰老一整年。
但你走得越远,这些差异就越严重。距离太阳最近的恒星系统比邻星大约需要4年才能到达,考虑到它距离太阳4.3光年,这会是一次非凡的旅行。长度缩短而时间膨胀的事实意味着你经历的时间比你实际穿越的距离要少。同时,回到地球的人在同一次旅行中会多衰老一整年。
The brightest star in Earth’s sky today, Sirius, is located about 8.6 light-years away. If you launched yourself on a trajectory to Sirius and accelerated at that continuous 1g for the entire journey, you’d reach it in just about 5 years. Remarkably, it only takes about an extra year for you, the traveler, to reach a star that’s twice as distant as Proxima Centauri, illustrating the power of Einstein’s relativity to make the impractical accessible if you can keep on accelerating.
今天地球天空中最亮的恒星,天狼星,位于大约8.6光年之外。如果你将自己发射到天狼星的轨道上,并在整个旅程中以持续1g的速度加速,你将在大约5年内到达它。值得注意的是,作为旅行者,你只需再花大约一年的时间就能到达一颗距离是比邻星两倍的恒星,这说明了爱因斯坦相对论的力量,如果你能持续加速,就可以实现不切实际的目标。
And if we look to larger and larger scales, it takes proportionately less additional time to traverse these great distances. The enormous Orion Nebula, located more than 1,000 light-years away, would be reached in just about 15 years from the perspective of a traveler aboard that spacecraft.
如果我们往更大的尺度上来看,穿越这些遥远的距离所需的额外时间就会相应减少。巨大的猎户座星云位于1000光年之外,从飞船上的旅行者的视角来看,他们将在大约15年内到达。
如果我们往更大的尺度上来看,穿越这些遥远的距离所需的额外时间就会相应减少。巨大的猎户座星云位于1000光年之外,从飞船上的旅行者的视角来看,他们将在大约15年内到达。
Looking even farther afield, you could reach the closest supermassive black hole — Sagittarius A* at the Milky Way’s center — in about 20 years, despite the fact that it’s ~27,000 light-years away.
放眼更远的地方,你可以在大约20年内到达最近的超大质量黑洞——银河系中心的人马座A*,尽管它距离我们约27000光年。
放眼更远的地方,你可以在大约20年内到达最近的超大质量黑洞——银河系中心的人马座A*,尽管它距离我们约27000光年。
And the Andromeda Galaxy, located a whopping 2.5 million light-years from Earth, could be reachable in only 30 years, assuming you continued to accelerate throughout the entire journey. Of course, someone back on Earth would experience the full 2.5 million years passing during that interval, so don’t expect to come back home.
而距离地球250万光年的仙女座星系,如果你在整个旅程中继续加速,只需30年就可以到达。当然,地球上的某些人会在这段时间内经历整整250万年的时间,所以不要指望你还能回到家里。
而距离地球250万光年的仙女座星系,如果你在整个旅程中继续加速,只需30年就可以到达。当然,地球上的某些人会在这段时间内经历整整250万年的时间,所以不要指望你还能回到家里。
In fact, so long as you kept adhering to this plan, you could choose any destination at all that’s presently within 18 billion light-years of us, and reach it after merely 45 years, max, had passed. (At least, from your frx of reference aboard the spacecraft!) That ~18 billion light-year figure is the limit of the reachable Universe, set by the expansion of the Universe and the effects of dark energy. Everything beyond that point is currently unreachable with our present understanding of physics, meaning that ~94% of all the galaxies in the Universe are forever beyond our cosmic horizon.
事实上,只要你坚持这个计划,你就可以选择目前距离我们180亿光年以内的任何一个目的地,并在仅仅40多年后到达它,最多45年 ( 从你在宇宙飞船上的参照系来看!)这180亿光年的数字是可视宇宙的极限,由宇宙的膨胀和暗能量的影响决定。在我们目前对物理学的理解中,超出这一点的一切都是不可能实现的,这意味着宇宙中约94%的星系永远超出了我们的宇宙视界。
The only reason we can even see them is because light that left those galaxies long ago is just arriving today; the light that leaves them now, 13.8 billion years after the Big Bang, will never reach us. Similarly, the only light they can see from us was emitted before human beings ever evolved; the light leaving us right now will never reach them.
我们能看到它们的唯一原因是因为很久以前离开这些星系的光今天才刚刚到达;而现在才离开它们的光,在宇宙大爆炸138亿年后,永远不会到达我们这里。同样地,他们能从我们身上看到的唯一的光是在人类诞生之前发出的;现在离开我们的光永远无法到达他们。
我们能看到它们的唯一原因是因为很久以前离开这些星系的光今天才刚刚到达;而现在才离开它们的光,在宇宙大爆炸138亿年后,永远不会到达我们这里。同样地,他们能从我们身上看到的唯一的光是在人类诞生之前发出的;现在离开我们的光永远无法到达他们。
Still, the galaxies that are within 18 billion light-years of us today, estimated to number around 100 billion or so, are not only reachable, but reachable after just 45 years. Unfortunately, even if you brought enough fuel, a return trip would be impossible, as dark energy would drive your original location so far away that you could never return to it.
尽管如此,今天距离我们180亿光年以内的星系,估计有1000亿左右,不仅可以到达,而且只需45年就可以到达。不幸的是,即使你带了足够的燃料,回程也是不可能的,因为暗能量会把你的出发点推得很远,以至于你永远无法回到那里。
尽管如此,今天距离我们180亿光年以内的星系,估计有1000亿左右,不仅可以到达,而且只需45年就可以到达。不幸的是,即使你带了足够的燃料,回程也是不可能的,因为暗能量会把你的出发点推得很远,以至于你永远无法回到那里。
Even though we think of interstellar or intergalactic journeys as being unfeasible for human beings due to the enormous timescales involved — after all, it will take the Voyager spacecrafts nearly 100,000 years to traverse the equivalent distance to Proxima Centauri — that’s only because of our present technological limitations. If we were able to create a spacecraft capable of a constant, sustained acceleration of 1g for about 45 years, we could have our pick of where we’d choose to go from 100 billion galaxies within 18 billion light-years of us.
尽管我们认为星际或星系间的旅行对于人类来说是不可行的,因为涉及到巨大的时间尺度——毕竟,“旅行者”号宇宙飞船需要将近10万年的时间才能到达比邻星——这仅仅是因为我们目前的技术限制。如果我们能够制造出一个能够在45年内保持1g恒定加速度的航天器,我们可以从180亿光年内的1000亿个星系中选择我们要去的任意地方。
The only downside is that you’ll never be able to go home again. The fact that time dilates and lengths contract are the physical phenomena that enable us to travel those great distances, but only for those of us who get aboard that spacecraft. Here on Earth, time will continue to pass as normal; it will take millions or even billions of years from our perspective before that spacecraft arrives at its destination. If we never ran out of thrust, we could hypothetically reach anywhere in the Universe that a photon emitted today could reach. Just beware that if you were to go far enough, by the time you came home, humanity, life on Earth, and even the Sun will all have died out. In the end, though, the journey truly is the most important part of the story.
唯一的缺点是你再也不能回家了。事实上,时间的膨胀和长度的收缩是物理现象,使我们能够旅行这些遥远的距离,但只对我们这些登上宇宙飞船的人来说。在地球上,时间将一如既往地流逝;从我们的角度来看,宇宙飞船到达目的地需要数百万年甚至数十亿年的时间。如果我们有无限的推力,我们可以到达宇宙中今天发射的光子可以到达的任何地方。只是小心,如果你走得够远,到你回家的时候,人类,地球上的生命,甚至太阳都将湮灭了。但无论如何,过程才是一个故事最重要的部分,而不是结果。
唯一的缺点是你再也不能回家了。事实上,时间的膨胀和长度的收缩是物理现象,使我们能够旅行这些遥远的距离,但只对我们这些登上宇宙飞船的人来说。在地球上,时间将一如既往地流逝;从我们的角度来看,宇宙飞船到达目的地需要数百万年甚至数十亿年的时间。如果我们有无限的推力,我们可以到达宇宙中今天发射的光子可以到达的任何地方。只是小心,如果你走得够远,到你回家的时候,人类,地球上的生命,甚至太阳都将湮灭了。但无论如何,过程才是一个故事最重要的部分,而不是结果。
评论翻译
很赞 ( 3 )
收藏
This is an awesome article on this exact topic!
这是一篇关于这个主题的很棒的文章!
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
That was great! They explained it so well that o actually feel like I have a very small grasp of Einstein’s theory...
太棒了!他们解释得如此之好,以至于我觉得我对爱因斯坦的理论只有一点点的了解。。。
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
The author’s blog is excellent: Starts with a Bang
这个作者的博客很棒:Starts with a Bang(从大爆炸开始)
Jesus, that was wild. Thanks!
Edit: traveling 18 BILLION lightyears away would only take 45 years
天哪,那太疯狂了。谢谢!
编辑:180亿光年的旅行只需要花45年
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
I may have misinterpreted your comment, I'm curious where you came up with the number. Are you including time it would take to accelerate to lightspeed?
It's from the article lixed in the parent comment. Basically, you'd travel 18 billion light years in 45 years if you could manage to maintain 1g of acceleration that whole time.
“我可能误解了你的评论,我很好奇你是从哪里得出这个数字的。你是否包括加速到光速所需的时间?”
这是来自这篇文章中的结论。基本上,如果你能在45年内保持1g的加速度,你将能在180亿光年内任意距离旅行。
Ah. Is this taking into account the requirement of slowing back down when you arrive at your designation? :P interesting though
啊。你是否考虑到你到达指定地点前需要减速的要求?不过还是很有趣
I'd guess yes, but not taking into account the speed limit of course
我想是的,但当然,是不考虑有速度限制的情况下
The article considers half of the trip is speeding up and half of the trip is slowing down, so there is 1g the whole time, just in different directions
文章认为一半的行程在加速,一半的行程在减速,所以整个过程中1g的加速度始终存在,只是在往不同的方向上施加
I can’t tell if you’re trolling or not because you just typed a whole bunch of gibberish
我不知道你是不是在钓鱼,因为你刚打了一大堆胡言乱语
It can take any amount of time you’d like it to if you have enough energy.
如果你有足够的精力,你在这上面花再多时间都不过分。
Thx it's a cool article, I always thought that you would need 15 years to travel 15 light years but you could travel the entire universe in just 45 years. I knew about time dilation but this made clearer a lot of things
谢谢这是一篇很酷的文章,我一直认为你需要15年才能旅行15光年,但没想到你可以在45年内旅行整个宇宙。我知道时间会膨胀,但这让很多事情变得清晰明了
Wow! Leaving this comment here so I can repeatedly come back to this article when I inevitably lose my understanding of the topic!
哇!我把这篇评论留在这里,这样当我搞不明白其中原理时,我就可以反复点回到这篇文章!
Really interesting article. So if it only takes 354 days of 1g to reach the speed of light, I suppose you would need to alternate accelerating and decelerating after that point. So every once in a while you need to prepare for a short period of zero G and then the inside of the ship rotates and starts decelerating at 1g but now you’re upside down and it feels like 1g again. Fun to imagine.
非常有趣的文章。因此,如果只需要354天1g加速就可以达到光速,我想你需要在这一点之后交替加速和减速。所以每隔一段时间,你需要准备一个短时间的零G,然后飞船转向,开始减速,再次达到1g,但现在你颠倒过来了,感觉又回到了1g。想想就很神奇。
It gets weird because as you approach the speed of light it matters where the observer is.
As I understand it...
From the outside the ship would appear to be accelerating less and less, but to the crew of the ship they would feel like they are still accelerating past the speed of light. From the perspective of the outside observer the trip takes thousands of years but from the crews perspective it only takes 45 years.
The example that helped me was the pingpong ball explanation but I don't think I could explain it well through text and can't remember the video that included it.
这很奇怪,因为当你接近光速时,观察者处于什么地方很重要。
据我所知。。。
从外部看,飞船的加速似乎越来越慢,但对飞船上的船员来说,他们会觉得他们仍然在加速,甚至超过光速。从外部观察者的角度来看,这次旅行需要数千年的时间,但从船员的角度来看,只需要45年。
帮助我理解的例子是乒乓球原理,但我不认为我能通过文字很好地解释它,也记不起包含它的视频。
Why not just keep cruising?
为什么不继续航行下去呢?
Dude that article has so many ads on it I only had about 1/4 of my ph screen to read the article, and I still had to scroll past other adds…..
哥们,那篇文章上有这么多广告,我只有大约1/4的手机屏幕能用来阅读这篇文章,而且我还必须往下滚动浏览其它内容。。。(疯狂点到广告)
This is why ad and scxt blockers exist.
这就是为什么AdBlock存在。
Amazing article. Thanks for sharing.
惊人的文章。谢谢分享。
Interesting! So if the people on a spacecraft couldn't see outside, then just keeping them on earth would feel the same as accelerating at 1g? Do you get time dilation effects just from being at 1g?
Edit: I see it's called "gravitational time dilation". I can't tell how much time dilation you would get on earth compared to a spaceship moving at 1g constant. The same?
太有意思了!所以,如果太空船上的人看不见外面,那么如果把他们扔在地球上,他们仍然会感觉就像在1g加速一样?你是不是在1g下的时候就得到了时间膨胀效应?
编辑:我知道这叫做“引力时间膨胀”。我不知道和以1g的常数运行的宇宙飞船相比,地球上的时间膨胀得会有多厉害。它们一样吗?
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
Presumably to go from 0 to 99.99999999% of light speed would be an absurd flesh destroying acceleration unless spread over a long time? So really we would have to add months? Years? Onto any calculation to not turn the pilots into a pile of goop?
假设从光速的0%到99.9999999%是一个荒谬的会导致肉身毁灭的加速度,除非中间经历很长时间?那么我们真的要再加几个月吗?还是几年?有没有想过不把宇航员当成是傻瓜?
Hi there, I am a physicist! No one has given you an actual answer yet except for one person who used classical mechanics instead, which unfortunately will not work at all in this case. Here is the full, relativistic answer you're looking for:
The amount of time it would take to achieve a speed of 99.99999999% the speed of light by accelerating at one g continuously is 11.5 years.
A few technical notes:
This amount of time is the time experienced by the passengers of the ship (which will be different from the amount of time passed on Earth / the departure location).
This speed is the relative speed between the ship and Earth / the departure location.
I assume the ship continuously accelerates at one g.
The equation used to get this answer is quite simple once you work it out (which is the hard part). You can plug in your own values to see how the answer changes for a variety of options.
Time = (c/g)*Tanh-1 (v/c)
v = speed of ship as measured by Earth / departure location (which is assumed to be some inertial reference point)
c = speed of light
g = Earth's gravitational acceleration
Tanh-1 = inverse hyperbolic tangent function
Edit: In case anyone is curious, it only takes 4.8 years to get to 99.99% light speed and only 1.4 years to get to 90% light speed. Also, this is obviously purely hypothetical since the amount of energy required to fuel a ship and get it up to such speeds would be totally insane. Also colliding with an interstellar mote of dust at such speeds would be catastrophic!
Another Quick Edit: In case anyone is reading this and wondering why the amount of time (11.5 years) is more than the ~1 year answer coming from classical mechanics (which is an excellent thing to wonder) I responded to another comment about this with an explanation here.
你们好,我是一名物理学家!除了使用经典力学理论外,还没有人能给你一个准确的答案,不幸的是,在这种情况下,经典力学根本不起作用。以下是您正在寻找的完整的相对论答案:
达到99.9999999%的光速所需的时间:持续1g加速度下需要11.5年。
一些技术上的注意事项:
这段时间是船上乘客经历的时间(与地球上/出发地点经过的时间不同)。
该速度是飞船与地球/出发地点之间的相对速度。
我假设飞船以1g的速度持续加速。
得到这个答案的方程式很简单,只要你算出它(这是最难的部分)。您可以插入自己的值,查看各种选项的答案如何变化。
时间=(c/g)*Tanh-1(v/c)
v=通过地球/出发位置(假定为某个惯性参考点)测量的飞船速度
c=光速
g=地球重力加速度
Tanh-1=反双曲正切函数
编辑:有人好奇,真的只需要4.8年就可以达到99.99%的光速,只需要1.4年就可以达到90%的光速吗。而这显然是纯粹的假设,因为为一艘飞船提供燃料并使其达到这样的速度所需的能量是不可思议的。同样,以这样的速度与星际尘埃发生碰撞将是灾难性的!
2次编辑:如果有人读到这篇文章,想知道为什么所需时间(11.5年)比经典力学的1年答案还要长(这其实是一件非常值得怀疑的事情),我在这里的另一条评论里进行了解释。
At last.
This is the first time I see an use for Hyperbolic Arctangent.
这是我第一次看到双曲反正切的用法。
I like Hyperbolic Arctangent, but only their first two albums...
我喜欢双曲反正切,但只有它们的前两部专辑(同名乐队)。
You can't be serious! "The Value of Derivatives" is a masterpiece!
你没在开玩笑吧!”导函数值“是伟大的杰作!
I preferred Fourier transform.
我更喜欢傅里叶变换。
Oh man, that one lyric in it: "any curve is just a series of sines"
Still gives me the chills.
哦,兄弟,里面有一句歌词:“任何曲线都只是一系列正弦”
依然能让我起鸡皮疙瘩。
I used to be a fan, but now I'm an air conditioner
我本来是个电风扇,但现在我是台空调了
As you approach light speed the length of time perceived by the astronauts approaches zero.
当你接近光速时,宇航员感知到的时间长度接近于零。
I think the issue that people don't quite understand is the word 'perceived'. It's not just perceived, it IS like that. It's just as true and real as 'perceiving' time is now, while sitting here. There isn't even a true 'timespeed' in the universe.
我认为人们不太理解的问题是“感知”这个词。这不仅仅是感到那样,而是现实就是那样。这就像坐在这里“感知”时间一样真实。宇宙中甚至没有真正的“时间速度”。(即1秒为什么是滴答一下的时间长度?只是人类设定的罢了)
So will my body age even if I don't perceive it moving at lightspeed? If it doesn't then perceive is not a good word since it involves lack of awareness of things happening like the body decaying.
那么,如果我感觉不到我在以光速运动,我的身体还会衰老吗?如果不会,那么感知就不是一个好词,因为它涉及到对发生的事情缺乏意识,比如身体烂掉了。
Correct. It has nothing to do with human awareness. If you started a stopwatch at the moment you travel with lightspeed it would still be at 00:00 when arrive at your destination.
( a stopwatch started at the same time on Earth would be at +100.000 years though)
Thats why such a spaceship would also be the ultimate fast-forward machine. Imagine blxing and 100.000 years has past on earth. It's mind-boggling.
对的。它与人类的意识无关。如果你在光速旅行的那一刻启动了秒表,那么当你到达目的地时,它仍然是在00:00。
(但是,地球上同时启动的秒表已经过去10万年了)
这就是为什么这样的宇宙飞船也将是终极快进机器的原因。想象你眨了下眼,地球上已经过去了10万年。令人难以置信。
Hang on, that makes it sound like Light travels in an instant... then how come there are parts of the universe we can't see because the light hasn't reached us yet?
Edit: Thank you for all the answers, unfortunately the part I'm still confused in is how something that is instantaneous, can then be slowed down and observed as moving (from our perspective). If something is instantaneous then it was never moving in the first place no?
等等,这听起来像是光在瞬间传播。。。那为什么宇宙中有些部分我们看不见,那里的光还没有到达我们身边?
编辑:谢谢你所有的答案,不幸的是,我仍然困惑的是,一瞬间发生的事是如何被减慢速度,并在移动中被观察到的(从我们的角度)。如果某个东西是发生在一瞬间的,那么它从一开始就没在动,不是吗?
From it's own perspective, light does travel in an instant. But for us observing the light, it travels at what we call light speed.
As to why there are parts of the universe that light hasn't reached us yet the answer has two possibilities:
It is coming from far away and it just hasn't had enough time (from our perspective to reach us yet). If it's coming from 100k light years away, it will take, well 100k years to reach here, counting with clocks on earth. It will take 0 seconds counting with the light's personal clock, if you could imagine one.
The source of the light is so extremely far away, that the space between us and the source is expanding faster than the speed of light. So even though the light is travelling towards here, there is always more space to travel through and thus it will never reach us.
从它自己的角度来看,光确实在瞬间传播。但对于我们观察光的人来说,它以我们称之为光速的速度传播。
至于为什么宇宙中有些部分光还没有到达我们这里,答案有两种可能:
它来自非常遥远的地方,只是还没有足够的时间(从我们的角度来看)到达我们这里。如果它来自10万光年之外,用地球上的时钟计算,它将需要10万年才能到达这里。如果你能想象的话,用光自己的时间计数只需要0秒。
而光源是如此的遥远,以至于我们和光源之间的空间以超过光速的速度扩展。因此,即使光正在向这里传播,但总有更多的空间可以传播,因此它永远不会到达我们。
And that will apply to everything outside of our cluster (if I remember the right size and term). Stars we see now won't be visible to the Earth in the future. In the distant future space between clusters will be so great that they will basically be gone to us.
这将适用于星团之外的所有事物(如果我记得正确的大小和术语)。我们现在能看到的星星在未来的地球将看不到。在遥远的未来,星团之间的空间将是如此巨大,以至于它们基本上都会离我们远去。
Wait! How can the universe be expanding away from us at faster than the speed of light when the speed of light is the fastest speed in the universe? Is it because we are also moving away from it in the opposite direction at the speed of light, effectively making the expansion twice the speed of light? Hmm… now if we could make relativity drives that move obxts towards us as we travel towards them, but only in a pseudo bubble that doesn’t effect real space time.
等等!当光速是宇宙中最快的速度时,宇宙怎么能以比光速更快的速度从我们身边扩展开来呢?是不是因为我们也在以光速向相反的方向移动,有效地使膨胀速度达到光速的两倍?嗯……那么,如果我们能制造相对驱动力,当我们朝着物体移动时,它能把物体移向我们,但只能在一个不会影响真实时空的伪气泡中。
Assuming they actually move at light speed it would feel like zero seconds since the time compressions approaches infinity as the speed approaches light speed. Unfortunately reaching lightspeed takes infinity energy.
假设它们以光速运动,感觉就像过去了0秒钟,因为当速度接近光速时,时间压缩接近无穷大。不幸的是,达到光速需要无限的能量。
Why does reaching lightspeed take infinite energy? Also why is the speed of light the fastest anything can travel at?
为什么达到光速需要无限的能量?还有,为什么光速是任何物体所能达到的最快速度?
Photons have no mass, but they do carry energy. So basically what you have is something with infinite energy compared to it's mass.
光子没有质量,但它们携带能量。所以基本上,你所拥有的是一个无限能量的物体,和它的质量相比。
Layman wondering: if gravitational attraction is effectively a property of mass, why are photons, a massless particle effected by gravity? Does the energy a photon contains act like pseudo/phantom mass or something entirely different?
外行提问:如果引力实际上是质量的一种属性,为什么光子,一种无质量的粒子会受到引力的影响?光子包含的能量是像伪质量/虚幻质量还是完全不同的东西?
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处
Mass curves space-time so the photon on a straight path get influenced away from where it was going. More mass=more curvature.
质量使时空弯曲,因此直线路径上的光子会受到影响,远离其前进方向。质量越大=曲率越大。
Photons aren't attracted to gravity per se. What happens is that gravity kind of "bends" the space towards it. From the perspective of the photon, it's just moving forward, it's just that it's path (space) is affected by gravity
光子本身不会被重力吸引。真正发生的是重力使空间向它“弯曲”。从光子的角度看,它只是向前移动,它的路径(空间)受到重力的影响
Cool thing is, that's exactly how gravity works for things with mass as well.
很酷的一点是,重力对有质量的物体也是如此。(所以我往前走不是我在路上走,是路在朝我走???)
Thank you. I think I was only half-remembering high school physics and got stuck with Newtonian stuff.
非常感谢。我想我只记得高中物理学过的一半东西,却被牛顿的东西搞晕了了。
Few answers here but none have hit the nail on the head. Gravity isn't a force in the sense that we think of it, it is a result of the warping (bending) of space time. From the photons perspective it is traveling in a straight line through space, it is the space in which the photon is traveling through itself which moves, as the mass of the obxt is pulling spacetime itself toward it.
The only way I can think to explain it is imagine two cats on a bed, the first cat drops down off the side of the bed and has its claws on the bedsheet, dragging the bedsheet to the floor, and the 2nd cat with it. From the first cats perspective the 2nd cat has fallen. From the perspective of the 2nd cat however, he's not moving. He's sat on the bedsheet and his position on the bedsheet hasn't changed, but the bedsheet itself has been dragged away taking him with it, and changed it's position relative to the room, while he still maintains his place on the bedsheet.
The bedsheet is space time. Cat number 1 is mass, the bedsheet is space (spacetime), and cat 2 is the photon.
这里的答案很多,但没有一个是一针见血的。重力不是我们想象中的一种力,它是时空扭曲(弯曲)的结果。从光子的角度来看,它在空间中以直线运动,当物体的质量将时空自身拉向它时,光子在空间中通过自身运动。
我能想到的唯一解释是:想象两只猫躺在一张床上,第一只猫从床边掉下来,爪子在床单上,把床单拖到地板上,然后床单把第二只猫一起带下来了。从第一只猫的角度来看,第二只猫已经掉下来了。然而,从第二只猫的角度来看,它并没有移动。它还是坐在床单上,它在床单上的位置没有改变,但床单本身被拖走了,带走了它,改变了床单相对于房间的位置,而第二只猫本身仍然保持在床单上的位置。
这里的床单代表时空。第一只猫代表质量,床单是空间(时空),第二只猫代表光子。
原创翻译:龙腾网 https://www.ltaaa.cn 转载请注明出处